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Abstract A

Variational (cost minimization) and local
constraint approaches are generally applicable to
problems in low-level vision (e.g., computation of
intrinsic images). Iterative relaxation algorithms are

9--wnatural*R choices for implementation because they can
be executed on highly parallel and locally connected
processors. They may, however, require a very large
number of iterations to attain convergence.
Multi-level relaxation techniques converge much faster
and are well suited to processing in cones or pyramids.
These techniques are applied to the problem of
computing optic flow from dynamic images.
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0.0 INTRODUCTION

Much work in low level computer vision has involved the

dense interpolation or approximation of sparsely-known or noisy

data. A few examples are image smoothing [NOR82], surface

interpolation [GR81,180,IH81," and optic flow computation,RH&841.hS

A recent approach to these problems has formulated them in terms

of optimization or constrained minimization. In general these

techniques are equivalent to solving elliptic partial

differential equations (PDE's) with boundary conditions and

constraints.

In either formulation, these problems can be solved by a

class of algorithms well suited to computer vision. It includes

the Gauss-Seidel iterative method [HY81] and assorted variants.

These methods are local, parallel, and distributed, attributes

which make them ideal for implementation on locally connected

parallel processors. They have one attribute, however, that

currently limits their applicability. The number of iterations

required for convergence is often very high - on the order of

O(dI*n), where 'd' is the distance (in nodes) that information

-. has to travel and 'n' is the order of the PDE's being solved

[B77b ,p.281].

In the problem domain of elliptic PDE's this slowness has

been overcome by using multi-level relaxation algorithms

[B77a,B77b]. In this approach, a standard iterative algorithm is

applied on grids of different resolution all of which cover the

data in registration. At each level the problem is solved in a

different spatial bandwidth. Thus, the various processing levels

r'.4

.):.- -9 *.......-**.T.* 9 *T - 9-. .. :"



4 Multilevel Relaxation

cooperate to compute the final result, which is represented at

the highest resolution level. The number of iterations required

is of order 0(d)

Given the value of multi-level relaxation to solving

elliptic PDE's with boundary conditions, we are interested in the

extension of these techniques to problems of optimization,

constrained minimization, and PDE's with obstruction (points

through which the solution must pass). Our work in areas such as

computing optic flow, interpolating sparse displacement data (for

motion analysis and geometric correction), and object surface

reconstruction has led us to study how multi-level methods can be

applied to these more difficult problems. We will present a

discussion of this along with preliminary results in the specific

problem domain of computing optic flow.

Regular hierarchical structures - such as multi-level grids

of varying levels of resolution - are established computational

architectures in computer vision [T78,TK80]. These have included

processing architectures [HR80], data structures [TP75,KD76], and

algorithms EK71,WH78,MP79,BURT82]. They are founded on cellular

array architectures which provide high-speed efficient processing

for image-oriented operations. Beyond this, they add multiple

levels of spatial resolution [HR80,TP75,WH78,MP79,BURT82] and

selective attention mechanisms [K71,KD76,TP75].

Hanson and Riseman's processing cone [HR80] is a parallel

array computer hierarchically organized into layers of decreasing

spatial resolution. It is designed to provide parallel

processing power both locally (fine resolution) and globally to

.
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varying degrees (coarse resolutions). Tanimoto and Pavlidis'

pyramids [TP75] are sequences of digitizations of the same image

at increasingly higher degrees of spatial resolution. Klinger

and Dyer's regular decompositions [KD76] (later, quad trees)

divide a picture area into successively smaller quadrants. In

these last two cases, the data structures were used to provide a

coarse to fine focus of attention which significantly speeded up

recognition algorithms such as edge finding and object detection.

This idea had been used earlier in Kelly's edge detection

algorithm [K71], which used edges in a coarsened image as a

"plan" in locating edges in higher resolution versions of the

same image. Wong and Hall [WH78] did scene matching by

correlation in a hierarchy of reduced resolution images. Matches

found in the coarse resolution images constrained the search for

matches in finer resolutions. This algorithm matched scenes

which were difficult for standard correlation techniques and did

so with far fewer computations. Marr and Poggio [MP79] presented

another hierarchical matching algorithm as a theory of human

stereo vision based on the matching of edges between a pair of

images. Edges detected in coarse resolution channels are

matched, and the matches are used to control eye vergence

* movements, thus allowing finer resolution channels to match

unambiguous edge pairs. Finally, Burt [BURT82] has developed

pyramid-based algorithms for multi-resolution low-pass and

. band-pass filtering which are low in both cost and complexity.

He has shown how these techniques can be applied to feature

extraction, image compression, image merging, scene matching and

motion detection.

. . . . . . . . . . . . . . .. .- .. . ... . ,
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1.0 A COMMON GROUND

In this section we describe a number of problems,

approaches, and algorithms, covering a range of recent work in

low level computer vision. These methods are not entirely

analogous in their development; hence a single, general

formulation is not attempted. Instead, we try to provide a

unifying framework within which various methods can be viewed.

To motivate this framework we first present some specific

examples of recent work.

1.1 Four examples

Narayanan et.al. [NOR82] approached the problem of smoothing

noisy images in the following way. Given a noisy image F(x,y)

find an approximation G(x,y) which minimizes the total error

measure

"4

SUM [ R2 + a * (F - G) 2 ] (1.1)

x,y

where R(x,y) is a roughness measure of G, computed for a

neighborhood of each point and 'a' is a relative weighting

factor. The first term penalizes roughness of G, while the

second term penalizes deviation of the approximation G from the

data F. The roughness measures used were discrete approximations

to 1) the Laplacian, 2) the gradient magnitude, and 3) a measure

of strong corners (viz. G G - G2 ). A steepest descentxx yy xy

1. See L73 for a general discussion of optimization methods.

.
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In his theory of visual surface interpolation, Grimson

formulated the problem as one of finding surfaces S(x,y) having

minimum total curvature and passing through (interpolation) or

near (approximation) points of known depth [GR81]. Approximation

was formulated as minimization of the functional

f f (SX 2 + 2Sx 2 + 2 )dxdy + B'SUM [S(x,y) - C(xy)]2 (1.2)J x y Syy P

where P is the set of points with known depth C(x,y). The

discrete version of this minimization problem was solved using

the conjugate gradient algorithm [L73]. Interpolation was

formulated as constrained minimization of the functional

i '(S 2 + 2S 2 + S 2) dxdy (1.3)

constrained to S(x,y) = C(x,y) in P. The discrete version of

this constrained minimization problem was solved using the

gradient projection algorithm [L73J.

Ikeuchi approached the problem of shape from shading as

follows [180,IH81]. Given a brightness image I(x,y), a

reflectance map R(f,g), and an occluding contour dA, find the

surface orientation (F(x,y),G(x,y)) in A which minimizes the

functional

SUM [I - R(F,G)] 2 + a*[(VF)2 + (VG)2 ] (1.4)

X ,y

where 17 is a discrete gradient. The first term of the

functional penalizes deviation from the

image irradiance/reflectance equation T(x,y) = R(f,g). The

second term penalizes roughness of F and G. This minimization

problem was solved by setting the gradient of the functional to 0

-
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and using Gauss-Seidel iteration to solve the resulting system of

linear equations.

Finally we consider Horn and Schunck's method of determining

optic flow given a dynamic image E(x,y,t) [HS81]. Their approach

is to find the optic flow vector field (U(x,y),V(x,y)) which

minimizes the functional

( E xU + EyV + Et) 2  + a * [ IVUI 2 + IVI 2 ] dxdy (1.5)

The first term in the functional is the square of the rate of

change of image brightness (measured in 3D space-time of the

dymnamic image space). When E U + EyV + Et = 0, spatial image

brightness changes are due purely to motion. The second term is

a roughness measure of U and V, where 7 is the gradient operator

and 'a' is a relative weighting factor. The Euler equations were

derived for this problem and a finite difference approximation

produced a system of linear equations that was solved using

Gauss-Seidel iteration. This particular example is discussed in

depth in section 3.

1.2 The General Framework

We will now consider a framework of that makes plain the

similarities and differences among the methods described above.

Figure 1 diagrams the major relationships. Each box is labeled

by a general technique or method. Within each box a specific

example is shown. The examples refer to the same problem in each

case, the solution of Laplace's equation or its variational

equivalent.

'p.

'".

I'
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The Continuous Case.

Variational calculus and elliptic partial differential

equations (EPDE's) represent the problem in a continuous domain.

In general a variational problem can be reduced to a partial

differential equation given by Euler's equation (CH53,p.183]

(Figure 1A -> Figure IB). These PDE's are elliptic in all of the

cases we consider. Moreover, for any EPDE a corresponding

variational problem can be constructed. Thus we are free to

start our analysis on either side in the top row of Figure 1 .

Both Grimson and Horn & Schunck began their analyses with

variational problem statements.

Discrete Approximations.

The introduction of finite difference approximations in

place of continuous derivatives transforms both variational

problems and EPDE's into discrete problems as shown in the middle

row of Figure 1. The integral in a variational problem becomes a

summation over a discrete set of grid points

(Figure 1A -> Figure 1C). In Figure iC this gives a summation,

over the 2-D grid indices i & j, of first finite difference

approximations of the horizontal and vertical partial

derivatives.

In Figure ID we see that the EPDE generates a separate

*J equation for each grid point relating that point to its immediate

: neighbors. !ij refers to a discrete Laplacian on the i,j grid.

-* The bottom line in that box expresses this set of equations as a

2-D convolution with the 5-point Laplacian mask. This system of

equations can also be generated from the d screte functional by

•.1, - '.' . .. . . . . ... . . . J "-' . . :,'- '',..-, '': -" -.- .. '%' "', V -.- '-". ; ."" ' ," ,"'" ,"7
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Elliptic Partial
A) Calculus of Variations <--> Differential Equations (B

Find U(x,y) which minimizes Find U(x,y) which solves

I ' 7U 12 dxdy / U = 0

t. 1
U2 + U2  dxdy i.e. U + U -0

x) y xx yy-

V V
C) Discrete Minimization -> Finite Difference Equations (D

Find U.. which minimizes Find Uij which solves

C SUM [Ui+ 1 ,j - Uij] 2  /siju 0
i,j

[U. 1 - Ui] 2  or 1 -4 1 *U = 0
i,j+1- 13 1

V
Relaxation Methods

E) Gradient ' scent Methods (e.g. Gauss-Seidel Iteration) (F

Find Uij iteratively Find Uij iteratively

Uk+1 <--U + a * V c lUk uk+l- ui+ 1,j + Ui-

+ j +k 4-

where 'a' is picked by a or

1-D (global) minimization uk+ 1 <__ Uk  +k,.z j +  ijU i

VC ~IJ. . .ju

,'| i

Figure 1: General framework of approaches and algorithms.

A,B) Continuous problem representations
C,D) Discrete approximations to continuous problems

* E,F) Iterative algorithms for solving discrc ;e problems
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computing its gradient (considered as a function of all the grid

point variables) and setting ijf equal to the 0-vector - this

being a necessary condition for the existence of a minimum. This

operation takes us from Figure 1C to Figure 1D. It is analogous

to using the first variation of the continuous functional to

derive the corresponding PDE. Ikeuchi takes this path.

Algorithms.

Finally, we come to specific algorithms for solving these

discrete problems. Consider first the system of finite

* difference equations in Figure 1D. This system is a large matrix

equation Ax = b, where the vector 'x1 contains all of the grid

point variables, 'A' is a sparse banded matrix containing the

* finite difference coefficients, and 'b' is a vector of right-hand

sides which can include forcing terms, boundary conditions, or

obstructions. Although many methods exist for solving such a

* system of equations, the requiremeiLs of low level vision

*problems quickly narrow our choice. In particular, iterative

relaxation algorithms, being local and parallel, are natural

* candidates given the computational constraints of a vision

system. Both Ikeuchi and Horn & Schunck use Gauss-Seidel

iteration to solve their equations.

Now consider minimization of the discrete functional in

Figure 1C. This is a problem that can be solved using the

techniques of mathematical programming (also known as non-linear

programming and cost minimization) [L73]. These methods use an

iterative scheme involving a two step cycle; 1) pick a

"direction" to search for the minimum, and 2) perform a one
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dimensional search along that direction. Two common methods for

choosing the search direction are the steepest descent (gradient)

method and the conjugate gradient method. The former method is

used by Narayanan et.al. while Grimson uses the latter. Steepest

descent is shown in the box of Figure 1E where the current

iteration Uk is updated by an optimal multiple of the gradient of

C evaluated at Uk.

An interesting parallel can now be seen between gradient

descent and relaxation methods. As the arrow joining the two

lower boxes in Figure 1 indicates, computing the gradient of the

cost functional is essentially equivalent to two dimensional

convolution with the discrete finite difference operator (up to a

scale factor). The only difference we see in the two methods is

the application of a one dimensional minimization procedure along

the direction of the gradient in the gradient descent method.

When the functional is quadratic this minimization can be

computed directly [GR81,NOR82]. Unfortunately this computation

is a global one in that it uses the full current solution

estimate and gradient images. In contrast, relaxation methods

remain strictly local. The use of a global factor does provide

faster convergence.

The Finite Element Method.

An alternative path from variational problems to relaxation

on linear systems of equations is given by the finite element

method. A good example of this can be found in Terzopolous'

extension of Grimson's work [T82]. While not equivalent to

finite difference methods, FEMs do produce similar systems of
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equations which can be solved with relaxation methods, thus

providing an alternate path from boxes (A) to (D) in Figure 1

1.3 An Aside on Constraints

We must distinguish between three types of constraints that

determine a problem - boundary conditions, obstructions, and

inherent constraints.
2

Inherent constraints are those that are represented in the

form of the variational problem or PDE. All of the problems we

have discussed involve an inherent constraint of smoothness of

the solution. The order of this smoothness can be defined as the

order of the partial derivatives in the functional. First order

smoothness typically uses the gradient magnitude as in [NOR82,

IH81, and HS81] and leads to second order EPDEs (e.g. Laplace's

Eq.). Second order smoothness constraints are seen in Grimson's

functionals where the corresponding EPDE is the biharmonic

equation

An2 U : U xxxx+ 2Uxxyy+ U yyyy = 0

Smoothness conditions constrain the solution in local

neighborhoods. The other case of inherent constraint we see is a

pointwise one derived from some relationship that must hold (as

well as possible) between the solution surface and the data.

Narayanan's formulation requires a solution near the initial data

(a relationship of equality). Ikeuchi's requires surface

orientation and image intensity to relate according to the

2. A fourth type - the isoperimetric condition [CH53] - is not
listed here since it does not typically occur in the class of
problems we are considering.

. . . . . . . . .
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reflectance map. Horn & Schuneck require optic ['low vector's to

lie near the velocity constraint line in velocity space.

The second type of constraint is the boundary condition.

*These conditions constrain the solution along the boundary of the

domain within which a solution is to be found. Typical

conditions include the vanishing of the function and/or its

derivative normal to the boundary (the Dirichlet and Neumann

conditions). Boundary conditions are determined both by explicit

specification (essential boundary conditions) and as an implicit

consequence of the particular variational problem or PDE (natural

boundary conditions).

It may seem that boundary conditions are an unfortunate

S complication in low-level vision problems since processing should

be independent of the location of the retinal boundary. We would

argue that this is too limiting an idea of where boundaries

occur. They should be viewed as demarcating regions within which

the inherent constraints are to hold. This can be seen in

Ikeuchi's work where boundaries were placed at the occluding

contours in an image. What if the occluding contours are not

known in advance? We are then faced with a key problem that

*remains to be addressed in our framework. Consider the

smoothness constraints used by Grimson and Horn & Schunck.

Dependent as they are on the continuity of objects (which holds

almost everywhere in the image) , these conditions break down

across occluding boundaries. Enforcing smoothness across these

boundaries corrupts the solution well into the adjacent regions.

It remains to be seen whether these conditions can be detected
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and whether a general approach to this problem exists.

The final type of constraint is the obstruction or obstacle.I, We see a specific case of this in Grimson's interpolation where

the smooth surface is constrained to pass through points of known

depth. Generally, such a constraint is given by a) a subdomain

A1 of the full domain A, b) a function C(x,y) over the subdomain

A,, and c) an inequality between the solution S(x,y) and C(x,y)

that must hold within A1 . Another example of this is Yachida's

use of exact optic flow estimates derived from prominent feature

points in his variant of the Horn & Schunck method [Y81]. These

known vectors were used as "fixed points" or seeds that did not

change value during the course of iteration.

*-

4S*.
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16 Multilevel Relaxation

2.0 MULTILEVEL RELAXATION

We have seen how various problems in low level computer

vision can be formulated as continuous or discrete variational

problems and equivalently as partial differential or finite

difference equations. Iterative relaxation algorithms are then

"natural" choices for solving these problems since they are

local, parallel, and distributed. Unfortunately the number of

iterations necessary for convergence can be very high - on the

order of 0(d**n), where d is the distance (in nodes) that

information has to travel and n is the order of the PDE's being

solved. Grimson's algorithm, requiring second order smoothness,

takes thousands of iterations to approach final solutions. 1This

slowness is due to the 1,t that solutions which must satisfy a

global condition (the variational problem) are arrived at by the

local propagation of information.

* 'Multi-level relaxation is an algorithmic extension of

iterative relaxation designed to overcome asymptotically slow

convergence. By representing the spatial domain at multiple

levels of resolution (in registration) these algorithms apply the

basic local iterative update to a range of neighborhood sizes.

Local updates on coarser grids introduce a more global

propagation of information.

In the basic multi-level method the domain of definition A

of the problem is represented discretely by a set of uniform

square grids GO,...,G ,...,GM with grid sizes ho,...,hk, ....,hM.

1. This number is based on the author's experiments.
See also T82.
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Each grid covers the full domain and we assume that

hi:hi+ 1 = 2:1. Suppose we have a PDE we wish to solve over A,

say

AU(x,y) = 0 or more generally LU(i) = F(R) (2.1)

where L is a general linear differential operator and U and F are

vector valued functions over Rn.

On each grid Gk we can form the finite difference approximation

to these PDEs;

AkUij = 0 or LkUk(i) F(i) k =O,...,M (2.2)

' The discrete approximation on a coarse grid Gk approximates the

same problem on the finest grid GM. This fact was used long ago

by engineers in the block relaxation method. In this method the

solution on a coarse grid is used as 'he initial estimate for the

finest resolution problem. Such an approach can be applied at

multiple levels of resolution.

Brandt [B77a,B77b] significantly extended the multi-level

approach by showing how the coarser grid can be used in the
process of improving the first approximation on GM  He combined

these ideas and developed iterative schemes that move up and down

a cone of multiple grids.

If we look a little more closely at the nature of

convergence in an iterative relaxation algorithm, we see that

sharp (high frequency) changes or errors are quickly smoothed.

This is due to the local nature of the smoothing. It is the slow

(low frequency) error components that resist elimination. These

ideas can be formalized in a local mode analysis of the

particular update equation [B77a,B77b) whereby the error

.I. A
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reduction is considered as a function of spatial frequency. The

theory of multi-level relaxation is based on these ideas and on

the fact that one grid's coarse resolution is another grid's

fine. After a few iterations on a given grid, high frequency

error is considerably reduced while low frequency error remains.

At this point we can approximate the remaining problem on a

coarser grid. The remaining error is a higher frequency on the

coarse grid, hence further relaxation at this level can reduce it

effectively. When convergence is attained at the coarse level,

that solution can be interpolated back to the fine level. This

interpolation introduces some high frequency error which is

easily reduced by a few more iterations. These processes easily

generalize to multi-level cyclic algorithms running on a cone of

grids. Approximate solutions are sent down the cone to finer

levels after they have converged. When convergence slows at

finer levels they are sent up the cone for coarser processing.

The role of relaxation in such a system is not to reduce the

error, but to smooth it out; i.e. to reduce high frequency

components of the error. Lower frequencies are reduced on

coarser grids. What is essentially happening in such a system is

that different grid levels solve the problem in different spatial

frequency bands.2

Following Brandt's development [B7'7a], 3  let uM be an

2. This particular idea breaks down on non-linear problems.
However, the multilevel approach does generalize. All of the

* problems we are considering are linear.

3. We will only show how the PDE approximation is handled. The
equations (& algorithm) for the boundary conditions are
handled in a similar manner.
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approximate solution of the GM problem and let

LMuM = FM - fM (2.3)

where the discrepancy fM is called the residual. Assuming L is a

linear operator, the exact discrete solution is UM = uM + VM,

where the correction VM satisfies the residual equation

LMVM = fM. If uM is computed by some relaxation iterations on GM

then fM has little high frequency content (relative to the grid

size hM). This allows the residual equation to be accurately

approximated on a coarser grid. The optimal time to perform this

switch to a coarser grid occurs when the residual fM is smoothed

out and convergence has slowed down. Relaxation on the coarse

grid produces an approximation vk of the correction VM. An

improved level M solution is then obtained by interpolating vk to

level M and adding this interpolated correction to uM.

A simple multilevel relaxation algorithm based on these

ideas called Cycle C [B77a] is shown in Figure 2. In this

notation, Ik- interpolates level k-1 data down to level k

(coarse to fine), while Ik+1 interpolates level k+1 data up to

level k (fine to coarse). The basic rule in Cycle C is that each

vk (the function defined on the grid Gk; k = O,...,M-1) is

designed to serve as a correction for the approximate vk+1

previously obtained on the next finer grid Gk+ 1. The equation to

be (approximately) satisfied by vk is

LkVk fk (2.4)

where fk approximates the residual left by vk + 1 , that is

fk = k (fk+1 - Lk+1vk+1) (2.5)

k+
The equation on Gk is thus defined in terms of the approximate

.4i

*, . .'-.,..,,' v..-................................................. ............-....... ...-....."................',....-,..... .. _ _....__, ...... -- * J. .. '.' __



20 Multilevel Relaxation

k <-- M ; start at finest level
fk <-- FM ; initial RHS

vk < uM ; initial solution estimate

Until vM has converged Do
Begin

v k <-- Relax [ Lk . fk] vk ; a relaxation "sweep"

If vk has converged Then

If k < M Then

k <-- k + 1 ; go down one level

vk <__ vk + Ik 1 k-I ;add interpolated correction

-, Else if convergence is slow Then

If k > 0 Then

k <-- k - ; go up one level
vk <__ ; initial estimate

fk <End < _ k+ 1(+ - Lk+vk+ 1) ; new RHS
;'"End if

End
Figure 2: Cycle C, multilevel relaxation.

solution on Gk+ 1 . On the finest grid, the equation is the

* original one;

fM FM (2.6)

Convergence is measured using the Euclidean (L2 ) norm of the

residual function which we will call the residual norm. The rate

of convergence is measured as the ratio of consecutive residual

norms from one iteration to the next. Convergence is "slow" when

this ratio rises above a threshold parameter (0.6 in our

experiments and in B77a). Convergence at the finest level is

defined by a user supplied tolerance (threshold) below which the

residual norm must fall. Convergence at an intermediate level is

,!
*', *00. ". .. , -,-'. .. %,. •*. , ,., - • - -,, -. .. ,. .- - - .0, , - . .- , , ., . .
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defined by a dynamic threshold. This coarse level threshold is

set, when we pass up the cone a level, to a fraction of the

current residual norm at the fine level. This fraction is

another parameter in the algorithm (0.3 in our experiments and in

B77a). Brandt claims robustness of such algorithms to the extent

that variations of these two parameter settings produce little

qualitative change in performance.

The two parameterized decisions that are used in controlling

the cycles are based on global computations, i.e. they are

computed from the current solution estimate over the entire grid.

It will be seen later - as Brandt has pointed out - that for some

problems we can forego the computation of the residual norm and

thus attain a purely local and parallel computation.

In the basic Cycle C algorithm an approximate solution only

exists on the fine level grid. All coarser levels deal only in

correction surfaces which approximate solutions for changing

residual equations. Brandt also developed FAS (Full

Approximation Storage) algorithms in which each grid level stores

the full current approximation. This approximation uk is the sum

of the correction vk and its base approximation uk+ 1 "

uk = u+ 1 + vk (k = 0,1, .. M-1) (2.7)

Using these full-approximation functions, the correction

equations can now be rewritten as

LkUk = k (2.8)

where

rk Lk(Ik u k + l ) + I k  (Fk+l " Lk+luk+l) k 0,..,M-1 (2.9)
k+1 k+1
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and

PM FM (2.10)

For linear problems equations (2.4)-(2.6) are equivalent to

(2.8)-(2.10). One advantage of the FAS method is that equations

(2.8)-(2.10) apply equally well to nonlinear problems

[B77a,p.3471.

A key aspect of the FAS method is that the function stored on a

coarse grid Gk approximates the fine grid solution in that

uk IkuM. These functions - at varying levels of resolution -

provide a hierarchy of descriptions of the solution. This makes

the FAS type methods particularly appealing to problems in

computer vision where structures of interest in the image can

occur at many sizes. For this reason, we have chosen to work

with FAS methods. The FAS generalization of the Cycle C

algorithm is shown in Figure 3.

2.1 An Example: Laplace's Equation

Consider the standard example problem of solving Laplace's

equation with a fixed boundary condition; find U(x,y) satisfying

AU(x,y) 0 on the domain A (2.11)

and

U(x,y) = C(x,y) for x,y in dA (2.12)

where dA is the boundary of A. This specific problem and its

various equivalents appear in the boxes in Figure 1. Figure 4

shows the results of performing Gauss-Seidel relaxation on a

finite difference approximation to equation (2.11) (as formulated

in the lower right hand box of Figure 1). Intermediate stages in

the iteration are shown in Figure 4a with the initial solution

-12
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k <-- M ,start at finest level
pk<- FM; initial RHS

vk <__ uM ; initial solution estimate

Until uM has converged Do
Begin

'- k <- ea k  rk] uk

u <-- Relax [ L ; a relaxation "sweep"

If uk has converged Then

If k < M Then

k <-- k + 1 , go down one level

uk <-- Uk + Ik_1(uk!-II-luk) ; add correction

If k > 0 Then

k <-- k - 1 , go up one level

"k < k uk+u -; initial estimate

Fk <-- k (pk+l - Lk+luk) u ; new RHS
k+1iL 1 +L

End if
End if

EnT
Figure 3: Cycle C/Full Approximation Storage, multilevel

relaxation.

estimate (all zeroes in the interior of A ; A - dA) labeled as

iteration 0. The residual norm is plotted against iteration

number in Figure 4b. In both types of display we see an initial

large reduction in error followed by a prolonged slow

convergence. In the surface plot, the quick smoothing of sharp

changes in the first few iterations is apparent.

The same problem was run under the Cycle C/FAS multilevel

relaxation algorithm. Results are shown in Figure 5 and Figure 6

The surface plots show various stages of the computation at

'1 different levels. The progress of the algoritht, is measured in

work units. At the finest level one work unit is defined as one

5~%
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Figure 4: Gauss-Seidel iteration on Laplace's equation, fixed
boundary.

a) Initial data (iteration 0) and iterations 1,2,5,10,
and 100; b) Semi-log graph of residual norm vs.
iteration number

,,)
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Figure 5: Multilevel relaxation on Laplace's equation, fixed
boundary.

Selected intermediate iterations labeled by work number

6.06256.12 5

. ... . . . . -,**'* .

.37 8.37
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Figure 6: Multilevel relaxation on Laplace's equation.

a) Residual norm vs. iteration number; b) Residual norm

vs. iteration with iteration axis labeled with the
corresponding work numbers

iteration. One level up it takes four work units to equal one

iteration. This reflects the fact that only one fourth as much

processing is done at that level since processing is proportional

to the number of nodes in the grid. In general an iteration at

level k costs (1/4) M-k work units. The residual norm is plotted

against iterations in Figure 6a. Each iteration is labeled with

the level at which relaxation took place. Note that

interpolation down the cone (increasing level number) introduces

a temporary increase in error. This high frequency interpolation

error is quickly smoothed by a few relaxation iterations.

Figure 6b also plots residual norm versus iterations but the

iteration axis is labeled by work units. This gives a better

indication of the work involved in reaching a given residual

error.

2- - 4 . :- ", 4 --
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Figure 7: Multilevel vs. single-level Gauss-Seidel relaxation.

This graph compares the results of the experiments
shown in Figure 4, Figure 5 and Figure 6.

A comparison of single and multi-level relaxation is given

in Figure 7 . Residual norm for both experiments is plotted

against iteration number. The multilevel algorithm clearly

converges faster. The situation is even better than the graph

indicates in that the comparison is based on iterations and not

work units. In the single grid algorithm one iteration equals

one work unit while in the multigrid experiment work units

accumulate much more slowly (see Figure 6b).

....................................... c. ..
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3.0 MULTILEVEL OPTIC FLOW COMPUTATION

The optic flow field is a vector field defined over the

image space. It specifies the instantaneous velocity of the

corresponding image component. Originally it was defined as the

projection of the velocities of the environmental objects being

* imaged (reference Gibson].

3.1 An Optic Flow PDE

Let us represent the optic flow field as

(U,V) = (U(x,y),V(x,y)) where U is the x-component of velocity

and V is the y-component. Let the dynamic image be given as

E(x,y,t). Consider the total derivative of E;

dE
-U ExU+ E yV + Et (3.1)

:-. dt

This equation relates the gradient of the dynamic image E to the

optic flow field (U,V). It also tells us the rate at which E is

changing along the direction of motion in the (dynamic) image.

Under simple viewing conditions (e.g. orthographic projection and

single distant light source) we expect the projection of an

environmental point to remain at a constant intensity, i.e.

dE/dt 0 and so

E U + E yV + Et 0 (3.2)

This equation specifies a line in U,V velocity space called the

velocity constraint line. This line is perpendicular to the

spatial gradient (Ex, E The vector perpendicular to this line
y

with length equal to the distance between the line and the origin

is
ExEt - EyEt'x ( ) (3.3)

(Ex + E ) / 2 ' (Ex  + Ey)I 2

" 'li" " " . .. - " ." ." "4..-." " " '
; " " " " " "" ' "' .'i'.' N ° • {-' ". ".'. ". - . - -"-
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For any (u,v) on the velocity constraint line, this vector is its

component parallel to the spatial gradient (perpendicular to an

edge).

Although velocity constraint lines can be computed at all

points in the image that have non-zero gradient, they do not

determine an optic flow field. Other information must be brought

to bear to constrain further our choice of a flow field.

Horn & Schunck built a variational principle to accomplish this

using a first order smoothness constraint on U and V. If in

addition to this, we required equation (3.2) to be satisfied,

this would lead to a problem in constrained minimization. Such a

constraint is likely to prove too strong due to the presence of

sensor noise and discretization (truncation) error. This

consideration led Horn & Schunck to include the inherent

constraint of small dE/dt in their variational principle for

optic flow. The resulting variational problem is to find the

optic flow field satisfying equation (1.5). The equivalent PDE

system (Euler's equations) is

a2L\U - E2U - E E V E Et (3.L4a)x x y t

a2AV - E -U - E V EyEt (3.4b)

This elliptic system of PDEs generalizes Laplace's equation in

that 1) it is a vector field equation and the component equations

are coupled, 2) 0th order terms appear, and most significantly 3)

the coefficients are non-constant (they depend on x & y).

-

. . . .. .. . -*. , - . , • - .. .
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3.2 Iterative Relaxation

A Gauss-Seidel method of iterative solution of a finite

2 difference approximation was used;

uk+1 U:~ k ..E *E u k + E k + E t / (a2 + E2+ E2) (3.5a)

:1 k1 k E[Ek Eu +Etl / (a + E2 + E) (3.5b)

where uand are local averages.

3.3 Experiments

The first frame of the test data for the experiments is

shown in Figure 8. In the first experiment the motion is

translational 1/2 pixel to the right and 1 pixel up. One

........

Figure 8: Optic flow test data -frame 1.

Cross product of sinusoids with 1% uniform noise added
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Figure 9: Iterative optic flow computation, Horn & Schunck
algorithm.

a) Iterations 0,1,2,5,10 and 50; b) semi-log graph of
residual norm vs. iteration number.

percent uniform noise has been added to all test data and is

uncorrelated between frames. The single grid Horn & Schunck

algorithm is shown in Figure 9. Figure 9a shows a portion of the

image plane at various stages in the iteration. The initial

estimate (iteration 0) for the optic flow field is computed from

* equation (3.3). An error graph is plotted in Figure 9b.

The results of the multilevel algorithm are shown in the

next two figures. In Figure 10 the first 14 iterations are shown

for a portion of the full image (the upper left corner).

Consecutive iterations at a given level are juxtaposed in the

vector plots. In this figure and succeeding vector plots, coarse

*resolution vectors have been plotted with lengths scaled to the

distance between pixel centers. Figure 11a plots residual norm

WeZ.-S- .**-.. -5*-.55. .-
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Figure 10: Multi-level optic flow computation.

a) iterations 0,2,3 b) iterations 4,5,6
c) iterations 7,8,9 d) iterations 10,11,12
e) iterations 13,14 f) error graph, iterations 0-14

vs. iteration. Convergence is reached at the 21st iteration. In
Figure 11b the iteration axis also runs from 0-26 but it is

labeled in work units. Convergence occurs at 13.5 work units.

Finally we present some experiments based on other types of

motion in Figure 12 and Figure 13. In both cases the first frame

is the same as the first frame in Figure 8. In Figure 12a the

*.
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Figure 11: Multi-level optic flow computation: error graphs.

a) Residual norm vs. iteration number;
b) Residual norm vs. iterations, labeled by work number

initial estimate for a rotational motion is shown. Figure 12b

shows later stages in the multilevel relaxation. The iterations

shown as vector plots correspond to the rightmost occurence in

the error graph of the given level. Figure 13 shows similar

results for depth motion, i.e. translation perpendicular to the

image plane.

In both of the above experiments the basic Cycle C/FAS

algorithm fails to work. The successful runs shown in the

figures were accomplished by preventing the algorithm from going

higher (coarser) than the coarsest shown level (level 3) and by

specifying how many iterations to perform at each level per

cycle. Relaxation done at level 2 causes the estimate to diverge

from the correct solution only to be corrected when back at level

3. This appears to be due to a failure to obtain an adequate

finite difference approximation of the problem at level 2.

Y|~t ~ ** . ~ ** -- 4.--- '-4

-- - .. ' [w r -, ,,".-'.,..':. , , .. _ ,-, ,', ,r. ," ," , - - . ., .- - -: " " '"" .' . ." . " """ "" "' ' " """: ". .' . " " . ". "
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Figure 12: Multilevel optic flow computation, rotational motion.

a) T'i~

a) iteration zero ...........
b) iteration 23 at level 5, .. ;.--..
c) iteration 21 at level 4 ... ,,t,

d) iteration 19 at level 3 . .................". ......... .

e) error graph. ......
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Figure 13: Multilevel optic flow computation, motion in depth.

a)

a) iteration 0 ,..

b) iteration 23 at level 5 ,*::: :::;
c) iteration 21 at level 4 .......

d) iteration 19 at level 3 ..........
e) error graph. ..
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Recall that the coefficients of the EPDE we are solving here (see

equation 3.2) are non-constant. The level 2 grid is too coarse

*(low frequency) to represent the data Ex, Ey , and Et . Merely

* restricting the algorithm to levels finer than level 2 is not an

adequate solution, since convergence at level 3 is not soon

attained. Instituting a fixed pattern of travel up and down the

cone solves this problem. More importantly, it eliminates the

need to measure the residual norm as iteration progresses, thus

* reestablishing the locality of the algorithm.

Brandt has also suggested fixed cycling patterns to reduce

computation expense, on the basis of experiments in which cycling

was observed to occur in regular patterns. For some problems he

has shown how to calculate optimal cycling patterns.
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4.0 SUMMARY

Variational (cost minimization) and local constraint

approaches are generally applicable to problems in low-level

vision (eg. computation of intrinsic images). They provide a

sound mathematical basis for ideas such as smoothness and "best

possible" constraint satisfaction. Moreover they admit

* computational implementations well suited to the domains of human

and machine vision. These are the iterative relaxation

algorithms which are " natural" choices for implementation because

* they can be executed on highly parallel and locally connected

*processors. Four examples were sketched to show both the range

* of problems that can be addressed and the variety of approaches

that can be taken. These approaches and the corresponding

algorithms were related in a general framework embodied in

Figure 1.

Multilevel relaxation techniques were introduced as an

extension of the basic relaxation algorithms. They provide an

efficient way of performing computations which at a single level

-may require a very large number of iterations to attain

*convergence. As hierarchical techniques, these algorithms are

also suitable for implementation by hierarchical computational

architectures. We mention specifically the cones and pyramids

that have been studied extensively in computer vision [see

various papers in TK8O]. The solving of Laplace's equation was

shown as an example of the operation of multilevel relaxation and

it was compared to standard (single level) relaxation.
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A multilevel relaxation was applied to the problem of

computing optic f low From dyi i, in i c imalJces. Fol l owing the

development of Horn & Schunck [H381], a variational problem is

established, Euler's equations are derived, and a Gauss-Seidel

iterative relaxation algorithm is formulated. This algorithm was

extended to a multilevel relaxation algorithm in the style of

Brandt [B77a,B77b]. Experiments exhibit the operation of this

algorithm and attest to its quick convergence.

5.

-L*.-' C * . . .
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